Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science End Sem (Odd) Examination Dec-2017 CA3CO04 Mathematics-I Programme: BCA Branch/Specialisation: Computer Application Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	Disjunction operator is represented by		1
		(a) ∧	(b) V	
		(c) \Rightarrow	(d) \Leftrightarrow	
	ii.	If $p =$ He is poor and $q =$ H	Ie is laborious then the statement "It	1
		is false that he is poor or lab	prious" in the language of logic is	
		(a) $p\Lambda(\sim q)$	(b) $\sim p\Lambda(\sim q)$	
		(c) $\sim (p\Lambda q)$	(d) $\sim (p \lor q)$	
	iii.	If A, B and C are any three no	Description on the contract of the contract o	1
		(a) $(A \cup B) \cap (A \cup C)$	(b) $(A \cup B) \cup (A \cup C)$	
		(c) $(A \cap B) \cup (A \cap C)$	(d) $A \cap (B \cap C)$	
	iv.	If A is any set then $A \oplus A =$		1
		(a) <i>A</i>	(b) Ø	
		(c) 0	(d) None of these	
	v.	If $A = \{4,5,9\}$ and $R = \{(4,5,9)\}$	(5), (4,9), (5,9) then relation <i>R</i> is	1
		(a) Reflexive	(b) Symmetric	
		(c) Transitive	(d) Anti – symmetric	
	vi.	If $f: x \to x $ be a mapping,	then the <i>f-image</i> of {-2,-1,0,1,2} is	1
		(a) {0}	(b) {0,1,2}	
		(c) {1,2}	(d) None of these	
	vii.	$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$ is equals to		1
		(a) 0	(b) 3	
		(c) 6	(d) None of these	

	viii.	If $y = x^n + a^n$ then $\frac{dy}{dx}$ is	1
		(a) $\frac{x^{n+1}}{n} + c$ (b) nx^{n-1}	
		(c) $\frac{x^{n-1}}{x^{n-1}} + c$ (d) 1	
	ix.	Let A be a matrix such that there exists a square sub matrix of order r which is non-singular and every sub matrix of order $r+1$ or higher is singular, then the rank of A is	1
		(a) $= r + 1$ (b) $< r$	
		$(c) = r \qquad (d) > r$	
	Х.	A system $AX = B$ having no solution if the rank of matrix A and augmented matrix $[A:B]$ is	1
		(a) 0 (b) Equal	
		(c) 1 (d) Unequal	
Q.2	i.	Check whether the statement $p\Lambda(\sim p)$ is a contradiction or tautology	2
	ii.	State whether the argument given below is valid or not valid. If	3
		it is valid, identify the tautology.	•
		I will become famous or I will be writer.	
		I will not be a writer.	
		∴ I will become famous	
	iii.	If p and q are any statements then show that	5
		(a) ~ $(p \land q) \equiv (\sim p) \lor (\sim q)$ (b) ~ $(p \lor q) \equiv (\sim p) \land (\sim q)$	
OR	iv.	If p , q and r are any three statements then show that	5
		$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
Q.3	i.	If $A = \{1,2,3\}, B = \{3,4,5\}$ then find $A - B$ and $B - A$. Also draw Venn-diagram.	2
	ii.	If U= {1, 2,3,4,5,6} $A = \{1,2,3,4\}, B = \{2,3,4,5,6\}$ then find $(A \cup B)'$ and $(A \cap B)'$.	3
	iii.	If A, B, C are three sets then prove that	5
		$A \times (B \cap C) = (A \times B) \cap (A \times C).$	
OR	iv.	Out of 450 students in a school, 193 students read "Science" and 200 students read "Commerce", 80 students read neither. Find out how many read both.	5

[5]	
Define floor and ceiling functions with example. Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ and $C = \{x, y, z\}$ and	2 3
let $R_1 = \{(1, a), (2, c), (3, a), (3, c)\}$ and $R_2 = \{(b, x), (b, z), (c, y)\}$.Find the composition relation	
$R_1 \circ R_2$. Also find the matrices M_{R_1} , M_{R_2} and $M_{R_1 \circ R_2}$.	
Show that the mapping $f: R_+ \to R$ defined by	5
$f(x) = logx$, $x \in R_+$ is one -one, onto, where R_+ is the set of	
positive real numbers and R is the set of real numbers.	
Show that the relation "less than or equal" (\leq) on the set of	5
positive integers is a partial order relation.	
~	
Evaluate $\lim_{x \to 0} \frac{x}{\sqrt{1+x} - 1}$.	4
$(2x+3 if \ x < 1)$	6
If $f(x) = \begin{cases} 2 & \text{if } x = 1 \end{cases}$	
$\begin{pmatrix} 7-2x & if \ x > 1. \end{pmatrix}$	
Check the continuity of $f(x)$ at $x=1$.	
If $y = loglog(logx)$ then find $\frac{dy}{dx}$.	6
<i>ux</i>	
Attempt any two:	
Investigate the values of λ and μ so that the equations	5
$2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$	
have (i) no solution (ii) a unique solution (iii) an infinite number	
of solution.	
Verify Cayley Hamilton theorem for the matrix	5
$A = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$ and hence find A^{-1} .	

Find the Eigen values and Eigen vectors of the matrix iii. 5 $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$

[3]

Q.4 i. ii.

OR iv.

Q.5 i.

OR iii.

Q.6

ii.

i.

ii.

iii.

• • • • •		
* *	Medi-Caps University	
End Sem (odd) Examination Dec-2017 RAGENO:		laishree
	Course Name: Mathematics -I (CA3C)	0041 MARKS
Que.1	<u>i (b) v</u>	
(1)	$(e) \sim (PVq)$	1
<u>(1))</u>	(C) (ANB) U (ANC)	
(11)	<u>(6)</u> ¢	
<u> (v)</u>	(c) Transitive	
<u>(V1)</u>	(6) 70, 1, 2 9	7 1
		1
<u>(in</u>	(b) nx ¹⁻¹	
	$\frac{(c)}{(c)} = 2$	1
	(9) Un equal	1
OUR 200		
<u> </u>	Me p be a statement. Truth table for prink)13:
	$\frac{p np p np}{T np np np np np np np n$, Cat
	F T C	+1
	Cipre all enhive to the	
	Still a contra dualization of PA(vp) are Fouly,	+1
	y y winswarchon.	
2 (11)	ht p: twill be	
	9: I will be walited	
	The given as gument is since it	
4-2-5	pvq (a primite)	
	~q (q premise)	
13.21 889	p (conclusion)	+1
1711117	The given argument is (PVQ) A (~Q) + b with 1	01 010
12 1 1 2	if the statement [[pvq] A (~9,17 -> h is a th	1
T	1000 we construct the truth table for the share and	+0.5
p	9 pvg ~ (pvg) A (~g) Tipup 10 (~g)	
Τ	TTFF	
T	F T T T T	
F	TTFFT	
F	F F T F T	2014

	I I I Fredricely Consult	and the
	PAGE NO: 2	
	DATE:	
and M	AND THE AMERICAN AND AND AND AND AND AND AND AND AND A	1 h ninon
me.2(11)	hit p and q be two statements.	111
(a)	Treity table for ~ (PAQ) = (~P)V()	Ciria Th
1	p q paq ~(paq) ~p ~q ~(p) v (~v)	
	TTTEFFF	
	TFFTFT	1
	FT FT TFT	ditur 1
(FFFT T	attals
- 1	gt is clear from the above table that the	*
	statement ~ (prg) (~p) (~g) both are toparty	1
	equivalent since both have same enme.	+2.5
	Tune $\mathcal{N}(pAQ) \equiv (\mathcal{N}p)\mathcal{N}(\mathcal{N}Q)$	175 M22
(6)	Tsuth table for ~(pva) =(~p) / (~q)	
1 1	p q pvq ~(pvq) ~p ~q (~P)A(~~)	
	TTTFFFF	
-1-4	TFTFTF	
	FTT <u>F</u> TFF	
	FFFTT	21.5.9
	gt is clear from the abene table that the stephene	wlout-
	~ (pva), (~p)v(~a) both are logically equin	uent,
	dince both column have same entries.	+2.5
	Thus $N(PVQ) \equiv (NP) \wedge (NQ)$	/
1+	and bac bac bacanes (pas)	for (1,22)+1
Riv	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	for (4,5 6)+3
	TTTTTT	For (7,8) +1
8-2+	TTFTTF T	101(110)
	TFTTFTT,	
	TFFFFFFFF	
	FTTTFFFF	
	FTFTFFFF	Total T5
	<u>FFTTFF</u> F	
2.1.1	FFF F F F F F F identified. Huncegiven statement is to	utopogy.

·	PAGE NO.: 3 DATE:	
nee. 3(1)	A = {1,2,3} B = {34,5}	NIR WWW
,,	They A-B = {+,2}, B-A = {4,5}	+ 1
	·: A-B= \$X: XEA but XEB?	+1
	A-B B-A	
3(1)	$U = \{1, 2, 3, 4, 5, 6\}$	
	A= {1,2,3,4} B= {2,3,4,5,6}	
	AUB = {1,2,3,4,5,6}=U	+1
	$(AUB)' = U - (AUB) = \phi$	+1
- 1 -+- 1	ANB = {2,3,43	
	$(AnB)^{1} = U - (AnB) = \{1, 5, 6\}$	+1
	The second and a second a se	
3(11)	If A, B, C. are tuse esti,	
	Let (x, y) beauxy arbitrary element of AX(BDC)	
1 +	- (x,y) EAX (BAC) => REA, YEBAC	
	=> REA, (YEB and YEC)	
	=> (XEA, YEB) and (XEA, YEC)	
8 194	=> (x,y) E(AxB) and (x,y) E(AxC)	
	\Rightarrow $(x_1y) \in (A \times B) \cap (A \times C)$	
	$\therefore A \times (B \cap C) \subseteq (A \times B) \cap (A \times C) \longrightarrow (1)$	42.5
	Again let (X1, Y1) E (AXB) M (AXC), they	
	$(x_1', y_1) \in (A \times B) \cap (A \times C) \Rightarrow (x_1', y_1) \in A \times B and (x_1, y_1) \in A \times C$	
<u> </u>	=>(xEA, Y, EB) and (XIEA I YIEC)	
	=> xIEA, (dies and diec)	
15	=) MEA, HIE (BAC)	
	\Rightarrow $(\chi_1, \chi_1) \in A_{\chi}(BAC)$	•
	$-\frac{(\chi_1,\chi_1) \in (A \times B \cap (A \times C)) \leq A \times (B \cap C) \rightarrow (D)}{(X \cap A \times C)}$	
	from () and (2)	IOE
	$A_{X}(\underline{n}\underline{n}\underline{c}) = (\underline{A}\underline{x}\underline{b})\underline{n}(\underline{A}\underline{x}\underline{c}),$	+203
	Hence booned,	
	THE THE MENTER AND A STREET	
X		

PAGE NO .: -MARKS Que.3010 suppose A and B denote ten set of students who read science and commerce, respectfully gt a gluen that n(A) = 193, n(B) = 200, n(U) = 450 $n(A^{C} \cap B^{C}) = 86$ +1 Now we should find the number of those students who read science as well as commerce I. M(ANB) Since ACABC = (AUB)C -- n(AUB) = 80. +1 But $\eta(AUB)^{c} = \eta(U) - \eta(AUB)$ = 80 = 450 - n(AUB)n(AUB) = 370+1 By principle of inclusion and exectusion n(AUB) = n(A) + n(B) - n(AB)+ => 370 = 193 + 200 - nLANB) or n(AnB) = 23. Thus 23 students read both science and Commerce. + 1 12-4 (i) Let x be any nal symber. The floor function, f(x) defined for x is the greatest integer less them or equal to x. This function f: R-> I is given by f(x) = Lx] = greatest integer less than or equal tox. Ture LXJ = n (> n sx < n+1 e-g. [40.25] = 4 + + n × n+1 -> flooroftent A ceiling function, con defined for a is the 50 smallyr clast) integer greater than or equal to x. The notation Fit is used for C(m). It x is a seal number, and n is integes then $Tx7 = n \Leftrightarrow n-1 < x \leq n$ +1

Rajshree 4(1) MARKS A= {1,2,3} B= {9,b,c} C= {x,y,z} $R_1 = \{(1, q) (2, c), (3, q), (3, c)\}$ R2= { (b,x), (b,z), (C,y) } RI R2 2 2 24 6-2. PC Ze $R_{10}R_2 = \{(2, y), (3, y)\}$ +1.5 (111) het the mappoing f: R+ -> R defined by f(x) = logn; xERt het x1 and x2 be positive seal numbers them logx1 and logx2 exists. $f(x_1) = f(x_2)$ =) logx1 = logx2 $\Rightarrow \chi_1 = \chi_2$ · f is one-one. +2.5 Again let YER be any asbitrary weal number, so that y = f(x)=) y = 10gx => x = ey We know that for every value of y (+veor -ve) et is always positive. Hence et ER+ and f(ey) = log(ey) = y Hence forallyER, its pre image et ER+. fisontomapping +2.5

PAGE NO.: 6 MARKS ne. 4/10 To prove the relation "S" or R is a partial order selation, we prome the following three properties hold (1) Reflexine. For any element XEIt, we have x < x, which is the for all xEI+ +1.5 Hence, R is septentie. Anti - symmetric. het x1, x2 G I be any two see elements, such that (2) x, <x2 but x2 <x, is not possible unlis x1 = 22. +105 Hunce, R is anH-symmetric, . 6 Transiture. Let X1, X2, X2 C It be any three elements. 3) such that X1 5 X2 and X2 5 X2 gt follows that x1 5 x2. +1.5 Hence R is transitive. Since all the three proputies of pastial order relation + 0.5 are satisfied, therefore the relation "L' or R is partial order ulation +1 Jul 5(i) To evaluate lim X = 0 form; X>0 VI+X-1 which is meaninglus +1 $\frac{\lim x}{2} = \lim x \frac{1}{2} \frac{1}$ $= \lim_{x \to 0} \underbrace{\chi(\sqrt{1+x}+1) - \lim_{x \to 0} \chi(\sqrt{1+x}+1)}_{1 \to 0}$ +1 = lim VIIX +1 noo +1 $= \sqrt{1+0} + 1 = 1+1 = 2$ $\frac{1}{12} \frac{1}{12} \frac$

. PAGE NO.: 7 MARKS Still Given : X<1 $f(x) = \frac{2}{2}$; x=1 : XYI -> (A) Right hand limit of f(x) at x=1 D $\frac{\lim +(x) - \lim (7-2x)}{x-31+}$ (-: 3y (A) 1 1--: pullting x=1+h and taking h > 0 when x -> 1 $\frac{f(1+0)}{h \to 0} = \lim_{h \to 0} \frac{f(1+h)}{h \to 0}$ $= \lim_{h \to 0} (7 - 2(1+h))$ = $\lim_{h \to 0} (7 - 2 - 2h) = 5$ 12. $\lim_{h \to 0} (7 - 2 - 2h) = 5$ +2 2 Left hand limit of fra at x=1 $\frac{\lim_{x \to 1^-} +(x) = \lim_{x \to 1^-} (2x+3) \quad (-2x+3)}{x \to 1^-} \quad (-2x+3) \quad (-$: putting $\chi = 1 - h$ and taking limit $h \rightarrow 0$ when $\chi \rightarrow 1$ $f(1-0) = \lim_{h \to 0} f(1-h)$ $= \lim_{h \to 0} (2(1-h)+3)$ $= \lim_{h \to 0} \left(2 - 2h + 3\right) = 5$ 1.e. L'm = 5 +2 value of function Again when x=1, then fire) = 2 Thus $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x)$ Times the given function is not continuous at x=11+2

- Rajshree PAGE NO .: 8 If y = log log (logx) → D on diff. equ. D wat'x) we get e_5(11) $\frac{dy}{dx} = \frac{d}{dx} \left(\log \left(\log \left(\log x \right) \right) \right)$ +1 = d logt. dt dx dx put log (logx)=t + $= \pm \cdot = \frac{1}{7} \left(\log \left(\log x \right) \right)$ +1 = 1, d logu log(llogx) dr put logx=le +1 $= \frac{1}{\log(\log x)} + \frac{1}{4} \frac{du}{dx}$ E t t, gllogx) log(logx) (logn) dr +1 4 L (logn)) (logn) x + 11e dy - + dr xlogxloglog(x) Answer The given system of equ. are. que 60) 2x+3y+5z=9 771+34-22=8 2x+3y+12=4 The above system of equ. can be additten in matrice form AX = B as $X = \begin{bmatrix} x \\ y \end{bmatrix}$ +0.5 $A = \begin{bmatrix} 2 & 3 & 5 \\ 7 & 3 & -2 \\ 2 & 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 9 \\ 8 \\ 4 \end{bmatrix}$ Thus the augmented matrix [A:3] is $\begin{bmatrix} 2 & 3 & 5 & 9 \\ \hline A & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 5 & 9 \\ \hline 7 & 3 & -2 & 5 \\ \hline 2 & 3 & 4 & 5 \\ \hline 2 & 3 & 4 & 5 \\ \hline \end{bmatrix}$ +0.5

. 1 8.1 PAGE NO .: D putting above values of A2 and A3 in equ. Diseget, MARKS A3-6A2+7A+21=0 +1 To find A-1; pre multiplying by A-1 in equ. D wegt A2-6A+7I+2A+=0 CEEDIN de- $\frac{08}{2} A^{-1} = \pm (-A^2 + 6A - 7\mathbf{I})$ +1 Answer our 5(sis) AI chasectivistic equ. 14-121=0 2 -=0 0 0 1-1 $(1-1)[(2-1)^2-1]=0$ +1 1 = 1, 1, 3. ergen values. +1 Case I let X = [31] be the eigen nector corresponding to eigen value 2-3. Then (A-31) X=0 They (A-31) X=0 XI => 0 0 - 2 Thus ergennector X = Lave That X = [2] The the eigenvector corresponding to 1=1 then (A-T) X = 0 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 13 6 3 $\chi_1 + \chi_2 + \chi_7 = 0$ taking 21 = K1 22 = K2 00 22 = -K1-K2 $\begin{array}{c} \vdots \quad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k_1 \\ -k_2 \end{bmatrix} = \begin{bmatrix} k_1 \\ -$

a. t. ; ; ; PAGE NO .: DATE: On openalting R2-> R2-7-R1, R3-> R2-R1 1-1 0 -15/2 -39/2 - Citron · -47/2 (A:B] \sim 2-6-00 : 11-9 Case I NO solution if J(A:B) 7 P(A) when 1-5=0 and 1-9=0 .+1 => 1=5 and 11 79 Case TI Unique solution if f(A:3) = f(A) =3 (Unknown) when 1-5= = 0 and I have any nature ie A # 5 and I have any value +1 Case III Infinite solution of f(A:B) = P(A) = 223 when 1 - 5 = 0 and 11-9=0 +1 A J=5 and U=9. 2 Ø que 6(ii) 9 3 2 0 The charactulistic equ. of matrix A is given by 1A-11=0 1-1 +0.5 =) -0 0 2-1 +0.5 $0 \rightarrow \mathbb{D}$ 13-612 To verify cayly Hamilton theorem, we show that +1 $A^{2}-6A^{2}+7A+2I=0 \rightarrow (2)$ 5 0 8 +0.5 $A^2 = A \cdot A =$ -4 2 5 0 13 * 0 34 21 +0.5 $A^3 = A^2 \cdot A \cdot \equiv$ 12 8 23 34 D CC